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ABSTRACT
Tracking and maintaining satisfactory QoE for video
streaming services is becoming a greater challenge for
mobile network operators than ever before. Download-
ing and watching video content on mobile devices is
currently a growing trend among users, that is caus-
ing a demand for higher bandwidth and better provi-
sioning throughout the network infrastructure. At the
same time, popular demand for privacy has led many
online streaming services to adopt end-to-end encryp-
tion, leaving providers with only a handful of indicators
for identifying QoE issues.

In order to address these challenges, we propose a
novel methodology for detecting video streaming QoE
issues from encrypted traffic. We develop predictive
models for detecting different levels of QoE degrada-
tion that is caused by three key influence factors, i.e.
stalling, the average video quality and the quality vari-
ations. The models are then evaluated on the produc-
tion network of a large scale mobile operator, where we
show that despite encryption our methodology is able
to accurately detect QoE problems with 72%-92% ac-
curacy, while even higher performance is achieved when
dealing with cleartext traffic.

1. INTRODUCTION
Mobile video will increase 11-fold by 2020, account-

ing for 75% percent of total mobile data traffic [1]. Such
rapid growth asserts significant pressure to mobile op-
erators who have to radically rethink and optimize their
network.
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To perform such optimizations and capacity planning,
operators have to deeply understand and monitor the
offered Quality of Experience (QoE) on video delivery.

Currently, most operators have made significant ef-
forts to facilitate the delivery of media-rich content us-
ing techniques such as caching, transcoding, compres-
sion and radio resource allocation across users.

At the same time, a significant number of major In-
ternet services have begun to encrypt their traffic. Cur-
rently more than 60% of mobile traffic is encrypted, a
number that is rapidly rising [2]. Popular video providers
such as YouTube, Netflix and Hulu now encrypt a large
part of their video content and the trend indicates that
most of video traffic will be encrypted soon [3].

While encryption of video content ensures the users’
privacy, it significantly impacts the ability of operators
to monitor or optimize their network [4]. Practically,
with encrypted traffic network operators cannot fulfill
essential tasks such as to inspect, protect, prioritize,
optimize, compress or balance traffic effectively.

In this paper we present a framework that is able to
extract key QoE metrics such as i) stall detection, ii)
average representation (resolution), and iii) representa-
tion fluctuations in encrypted traffic. More specifically,
our contributions are the following:

• We analyze more than 390,000 unique non-encrypted
video sessions collected by a web proxy that is de-
ployed on the cellular network of a large provider
with more than 10M customers in order to extract
insights about video delivery mechanisms and QoE
issues.

• We use the insights and the ground truth from
the non-encrypted traffic to build a unified QoE
measurement method for both adaptive and tradi-
tional video streaming over HTTP.

• We then validate our work on encrypted traffic
collected from the same network. First we com-
pare the similarities and the differences to the non-
encrypted traffic delivery. Furthermore, we setup
controlled experiments to verify the accuracy of



the developed model. We demonstrate that the
models we developed can identify quality issues
from unencrypted data with accuracies between
78% and 93.5% and from encrypted traffic with
accuracies between 76% and 91.8%.

• We provide important insights about the informa-
tion that can be extracted from encrypted traffic.
Our results indicate that i) passive measurements
from a single vantage point are enough to accu-
rately detect the key factors that affect the users’
experience ii) we discuss on the features that are
the most significant for detecting each particular
problem iii) we demonstrate that client instrumen-
tation is not required.

2. BACKGROUND AND MOTIVATION

2.1 Video Streaming Background
For many content providers HTTP has become the

preferred protocol for video delivery over the last few
years. HTTP streaming combines advantages such as
firewall pass-through and easy network address trans-
lation, but also the benefits of TCP, i.e. congestion
control mechanisms and reliable packet delivery.

Traditional HTTP Video Streaming
In traditional HTTP video streaming, the video is down-
loaded as a single continuous file which represents a
single quality setting. Moreover, video buffering is em-
ployed as an additional measure to compensate for jitter
and short-term bandwidth variations.

Typically, each video session can be divided into two
buffering phases, i.e. the start-up phase and the steady
state [5]. During the start-up phase the player will
download the first part of the video as fast as possi-
ble to quickly fill the buffer and minimize the initial
delay before the playback begins.

Once the buffer has been filled up to a specific thresh-
old and the playback has started, the video session goes
into the steady state. This phase is characterized by
ON-OFF cycles, also referred to as pacing, where the
download is paused as soon as the buffer has been filled
and resumes when it is reaching depletion.

HTTP Adaptive Streaming (HAS)
In contrast to traditional streaming, HAS videos are
split on the server in multiple segments, each one cor-
responding to a few seconds of playback time. Each
segment is encoded in a range of different quality pro-
files which are defined by the content provider.

Instead of requesting the entire video, the player per-
forms HTTP requests to fetch consecutive segments.
The quality profile of the next segment is determined
as a function of the throughput with which the previ-
ous segment was downloaded and the available seconds
of playback in the buffer. In this way, the representa-

tion of the video can change dynamically to adapt to
changes in the network and minimize stalls.

2.2 Factors that Affect Video QoE
Initial Delay
The initial delay refers to the time spent from the mo-
ment the user requests the video until the playback be-
gins. This delay has two components, the network de-
lay and the initial buffering delay. The former can be
attributed to factors such as network latency, longer
server response times, DNS lookups and/or CDN redi-
rections. The later is caused by the time required to
perform the initial fill of the buffer with sufficient video
data to allow a smooth playback.

Both Mok et al. [6] and Etoh et al. [7] agree that this
factor has the lowest impact on the QoE as users tend
to be more tolerant to longer initial delays than other
impairments such as stalls or quality changes.

Stalls
Whenever the network throughput is not sufficient for
the content to be downloaded faster than the rate that
it is consumed, the buffer is depleted and the playback
is forced to pause until more data are downloaded and
the buffer is filled again.

Hoßfeld et al. [8] showed that not only the frequency
but also the duration of the playback stalls which occur
due to buffer outages, have a high correlation with poor
QoE. Specifically, the authors conclude that a video
with 2 stalls of 3 seconds duration each, will lead to
significantly lower Mean Opinion Score (MOS).

Moreover, Mok et al. [9] found that the rebuffering
frequency has the highest impact on QoE and that a
medium rebuffering frequency can result in a MOS lower
by 2 points.

In this work, we measure the stalls using the Rebuffer-
ing Ratio which is expressed as the time spent stalling
over the total duration of the video session.

Average Representation Quality
The average quality can be applied only to HAS video
sessions, since only in these cases quality representation
changes may occur. It is calculated as the average of all
the individual qualities of the segments which belong to
a video session.

Multiple related works have shown a high correlation
between the video representation quality and the user’s
QoE. In one of these studies [10], the subjective exper-
iments performed in mobile networks have shown that
video streams with higher quality representations are
linked to better overall QoE.

Representation Quality Variation
Another factor that affects the QoE of adaptive video
streaming, is the changes in quality variation. The vari-
ation in this case has two dimensions, the frequency of
the changes and their amplitude. The frequency is the
absolute number of changes that occurred in a video ses-



sion, while the amplitude corresponds to the difference
in magnitude between two consecutive qualities.

In [11], the authors investigate how the representa-
tion switching amplitude and the switching frequency
affect the QoE. Their results show that the switching
amplitude has a very high impact on the user experi-
ence.

2.3 Problem Statement
Adaptive streaming and encryption are nowadays the

default technologies used by the majority of the popu-
lar content providers. The widespread adoption of these
new technologies has given rise to a new set of challenges
for identifying video QoE issues and has rendered pre-
vious solutions obsolete.

Deep Packet Inspection (DPI) solutions for extracting
quality metrics, such as the video resolution and stall
characteristics [12], [13], do not work anymore with en-
crypted traffic. Moreover, adaptive quality switching
has introduced new factors that affect the user’s expe-
rience, i.e. quality switching amplitude and frequency.
However, these factors were not included in previous
models for video QoE.

These changes in video streaming technologies, have
caused a high demand, not only by network operators
but also the by research community, for updated tools
and methods for detecting and quantifying quality is-
sues.

Towards this end, this work aims to provide new
methods for assessing the different types of impairments
that affect the users’ QoE from encrypted traffic.

2.4 Challenges
Although many services have already made the mi-

gration towards adaptive streaming, their platforms con-
tinue to maintain backward compatibility with tradi-
tional static streaming. Therefore, one of the main
challenges in this work, is to provide a solution which
will be compatible with current but also previous video
streaming technologies.

Moreover, with end-to-end encryption enabled, a great
part of the metrics that were previously available in the
network traffic for detecting QoE issues is now becom-
ing inaccessible. For this reason, one of our challenges
is to identify the right metrics from the limited amount
of information that is provided by encrypted traffic and
build the models to detect quality impairments. In or-
der to accomplish that, we need to reverse engineer the
video services and rely on machine learning and time
series analysis.

Finally, in order to preserve the user’s privacy but at
the same to make our solution as generalizable as pos-
sible, we focus on developing a methodology that will
be capable of detecting problems from network traffic
alone and will not depend on the instrumentation of
devices or video players and therefore it can be easily
deployed by operators.

3. DATASET
The set which is presented in this section is con-

structed from unencrypted data that contains the ground
truth for the QoE impairments of each video session.
This information is then used to create the predictive
models for identifying each impairment type. We then
move to a set of encrypted data to validate the previ-
ously constructed models using controlled experiments.

3.1 Weblogs
The data is collected from a web proxy that is de-

ployed on the cellular network of a large European provider.
The proxy is capable of registering all unencrypted HTTP
traffic including IP-port tuples, URI’s, object sizes, trans-
action times, request time-stamps and more. Moreover,
each log is annotated with a set of transport layer per-
formance metrics, i.e. bandwidth-delay product (BDP),
bytes-in-flight (BIF), packet loss, packet retransmissions
and RTT. The BDP is equal to the link’s capacity di-
vided by its round-trip delay and represents the max-
imum amount of bytes that can be transferred by the
link at any given time.

The dataset is created from YouTube traffic weblogs
which are collected over a period of 45 days spanning
from February to April 2016. From all the HTTP traffic
that is generated by the service, we keep the weblogs
that correspond to video and audio segment downloads
and the signalling exchanged between the video player
and the service during playback.

All the data is anonymized before the extraction by
removing all private information such as user agents,
subscriber and handset identifiers, MAC and IP ad-
dresses and so on. The only identifier which is pre-
served is the unique 16-character video session ID which
is generated by YouTube. This parameter is described
in more detail in Section 3.2.

We find that YouTube is the most suitable candidate
among the currently popular video streaming services
for developing and evaluating our methodology. The
main reasons for this are i) the service’s huge popular-
ity which allows the generation of a very rich dataset
in a short time window, ii) the diversity of the pro-
vided content in terms of video formats, qualities and
durations, iii) its popularity among mobile users and
iv) the adoption of modern technologies i.e. Dynamic
Adaptive Streaming over HTTP (DASH), HTML-based
video playback and pacing.

Moreover, most of the popular video sharing services
are currently following YouTube’s streaming paradigm,
adopting adaptive streaming, a variety of supported
codecs and HTML-based players.

Note that although Google has in the recent years de-
ployed HTTPS for all of its services including YouTube,
we can still observe significant amount of video sessions
in cleartext HTTP in our dataset. This is attributed to
the fact that many users use legacy devices or players



that either do not support TLS encryption or do not
have it enabled by default.

Nevertheless, we verified through experiments in the
lab that apart from the encryption which is enabled by
default, the delivery mechanism and overall behaviour
of the app remains the same with newer devices with
modern browsers and the latest version of the app.

In the weblogs, each segment download is generated
from the client with a separate HTTP request and there-
fore we obtain a new entry for each new video chunk.
From the list of metrics mentioned above, we also com-
pute the chunk size and the chunk time that indicates
the time when a video chunk arrives at the client, since
in our experiments we found they bring relevant infor-
mation to model the QoE impairments. The complete
list of the metrics extracted from the traffic can be found
in Table 1.

The final set consists of approximately 390,000 unique
video sessions. However, only 3% of these are adaptive
streaming sessions. This imbalance is expected since
we are able to observe traffic from mainly legacy de-
vices and video players which do not support the more
recently adopted adaptive technology.

For the methodology of the stall detection we take
the entire dataset, while for the development of the
average representation and the representation quality
switch detection we only keep the videos that made use
of adaptive streaming.

Network Features Ground Truth (URI)
minimum RTT chunk resolution
average RTT stall count

maximum RTT stall duration
Bandwidth-delay product video session ID

average bytes-in-flight
maximum bytes-in-flight

% packet loss
% packet retransmissions

chunk size
chunk time

Table 1: Metrics that we extract from the opera-
tor’s web logs (left column) and the ones that are
reverse engineered from the request URIs (right
column). The features (left) are available for
encrypted and non-encrypted flows whereas the
ground truth is only available for non-encrypted
sessions.

3.2 Ground Truth
From the meta-data that are passed as parameters in

the URIs of the HTTP requests we are able to collect the
ground truth that will be used in the evaluation phase.
In more detail, these parameters carry three main types
of statistics, i.e. generic device and player stats, content
stats and playback stats [13].

The generic stats include information about the user’s
device such as OS, locale, screen resolution, player type
and so on. One of the most important parameters here,
is the unique video session ID. This ID is a 16-character
hash that is randomly generated and it is unique to each
session. We use it to identify and group together all the
weblogs that belong to the same video session.

The content stats are extracted from the HTTP re-
quests for downloading the individual video segments.
One of the the parameters in this group is the ‘content
type’, which indicates if the segment contains video or
audio content and the multimedia container that was
used to encode it, e.g. MP4, FLV or WebM. ‘Itag’ is
another parameter which is used to specify the bit-rate,
frame-rate and resolution of the segment, which we use
to obtain the ground truth for the changes in represen-
tation quality throughout the session.

Finally, the playback statistics are included in the
statistical reports that are periodically sent from the
player to Google servers during the playback. Each re-
port contains information that summarizes the progress
of the playback since the previous report was gener-
ated. Different flags are used in the reports to specify
if the video has successfully loaded, if the playback has
started, paused or stopped and if there was a stall and
how long it lasted. These indicators allow us to dis-
cover if a video was played throughout or abandoned
and more important, identify the frequency and dura-
tion of stalls.

Out of the information that is available in the unen-
crypted data, we only use the chunk resolution, the stall
count and duration and the video session ID (Table 1).

These features will be used as the ground truth for
training the detection models in Section 4. After the
completion of training phase, the access to the ground
truth from unencrypted traffic will no longer be required
and even if YouTube removes this information or de-
ploys encryption for all sessions, the methodology will
still be applicable.

3.3 Data Preparation
Before starting the analysis, we ensure that any logs

that correspond to cached and/or compressed content
by the proxy are removed from the dataset.

Next, after the ground truth for the stalls and repre-
sentation switches is extracted, all the logs that belong
to the same video session are identified by the common
session ID and are then grouped together.

Thus, each entry in the dataset corresponds to a unique
video session which includes information about the total
number of stalls and their duration, as well as the char-
acteristics of each chunk such as the quality representa-
tion, size, download time-stamp, but also the transport
layer statistics like RTT, loss, re-transmissions, BDP
and bytes-in-flight for each chunk download.



4. BUILDING THE DETECTION
FRAMEWORK

Our approach involves first the development and test-
ing of the detection framework with unencrypted data.
As soon as we verify that the constructed models can
leverage the cleartext dataset, we can proceed to test
the framework with data from encrypted video streams.

As mentioned in Section 2, there are three main types
of impairments which may cause the degradation of
poor video QoE, the frequency and duration of stalls,
the session’s Average Representation Quality and the
Representation Quality Variation [10].

The initial delay is not considered as part of our video
QoE model given its small contribution on the overall
user experience as explained in 2.1.

In this section we describe the process of identifying
from the limited number of metrics that are offered by
the encrypted traffic, those that are the most significant
for creating predictive models to detect each of the three
types of impairments. An important part of this process
is the feature construction that allows the generation of
new more powerful features from the already existing
ones.

Next, we show that there is a different set of met-
rics that better describes each type of impairment and
contributes more information to the detection model.

In order to generate predictive models for detecting
the level of stalling and the average representation, we
use Machine Learning (ML) and in particular the Ran-
dom Forest algorithm and 10-fold cross-validation.

Classification is preferred over regression given that
we divide the data in discrete classes in both scenar-
ios and the models are required to identify in which
class each video session belongs based on the amount of
stalling or the level of the average representation.

4.1 Stall Detection
Feature Construction
From the traffic features described in Section 3 (Ta-
ble 1), we generate summary statistics, i.e. max, min,
mean, standard deviation, 25th, 50th and 75th per-
centiles for each of the metrics, resulting in 70 new met-
rics.

Among all the performance metrics that we take into
consideration, the chunk size is one of the most impor-
tant for detecting stalls. If we take an example of a
video session were stalling has occurred (Figure 1), we
can see the significant changes in the chunk size when
the two events take place at the third and the seven-
teenth second of the video session.

More specifically, whenever there is an outage on the
player’s buffer that results in a stall, the player will
request small chunks which can be downloaded much
faster so that the buffer will be filled as soon as possi-
ble and the video playback can resume. Then the size
of the chunks will gradually increase and remain at a

maximum value during the steady state as long as no
further issues occur.

Therefore, we understand that we can significantly
improve the accuracy of the stall detection model by
including the sizes of the chunks in our feature set.
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Figure 1: Changes in chunk sizes in a video ses-
sion with stalls.

After all the required features have been generated,
the dataset is then split into sessions without stalls and
sessions where at least one stall has occurred. The infor-
mation regarding the number of stalls observed during
a video session and their duration, is the ground truth
which is extracted from the meta-data of URIs as men-
tioned in Section 3.

Figure 2 (left) illustrates the distribution of the num-
ber of stalls that occurred per video session. We observe
that 12% of all the sessions have suffered from rebuffer-
ing events, while about 8% was affected by more than
1 event.

Figure 2: ECDF of number of stalls (left) and
rebuffering ratio (right) per session

Labelling
Next, we use the information from the ground truth
to label the data and create a predictive model. To
do this, first we calculate the re-buffering ratio (RR)
for each video session as the ratio of the sum of the
duration tstall k of each of the total K stalls over the
duration of the entire session ttotal (eq. 1)

RR =

∑K
k=1 tstall k

ttotal
(1)

The sessions are then labelled according to the rule
below. The definition of three levels of stalling, i.e. no



stalling, mild and severe, allows a more detailed view of
the degree to which the stalls affect the user.

Stall labels :

 “no stalling” : RR = 0
“mild stalling” : 0 > RR ≥ 0.1

“severe stalling” : RR > 0.1

The RR threshold for distinguishing mild and severe
stalling is set to 0.1, since in their work [14] Krishnan
et al. have shown that when the RR is over 0.1, the
severity of the stalling causes such a quality degradation
that leads the users to abandon the video.

Figure 2 (right) shows the distribution of the RR per
video session. We can observe that the sessions with RR
equal or greater thatn 0.1 correspond to approximately
10% of the distribution.

Feature Selection
We then proceed to apply Feature Selection (FS) us-
ing the Correlation-based Feature Subset Selection (Cf-
sSubsetEval) with the Best First search algorithm to
reduce the number of features from 70 to the following
four, BDP mean, packet re-transmissions max, chunk
size min and the chunk size standard deviation.

The output of the feature selection algorithm reveals
that there are three important factors that are corre-
lated with stalling, BDP which is equivalent to through-
put, number of retransmissions and chunk size. The
limited throughput and increased number of retrans-
mitted packets are QoS metrics which are performance
indicators of congested networks and/or networks with
limited bandwidth where stalling is more likely to occur.

Table 2 shows the gain of each of the features that
were obtained after FS was applied and their respective
information gains. The information gain represents the
contribution of each feature in the construction of the
predictive model. Features with higher information gain
have a higher correlation with the problems that we
want the model to detect and are used more frequently
by the classifier.

The higher gains for the minimum and standard devi-
ation of the chunk size indicate that both these features
carry important information for detecting if a video suf-
fered from stalls or not. Smaller chunk sizes correspond
to lower quality streams that are frequently selected by
the user or the adaptive algorithm in the presence of
poor network conditions and limited bandwidth.

On the other hand, larger deviation of the size of
chunks is related to sudden changes in the network’s
performance that in turn lead to quality switches during
playback. In both cases the videos which are streamed
under these conditions are more prone to stalling due
to buffer outages.

The BDP and number of packet retransmissions have
a more clear and direct correlation to low bandwidth
and congestion scenarios where the speed at which the
video buffer is filled is limitted and therefore there is a
much higher probability of stalling. These metrics can

be beneficial specially for cases of traditional streaming
where the video is downloaded over a single connection.

info. gain feature
0.45 chunk size minimum
0.25 chunk size std. deviation
0.18 BDP mean
0.12 packet retransmissions max

Table 2: Features and respective gains for the
stall detection model.

Training and Testing the Predictive Model
In order to avoid biasing the results during the test
phase, we balance the number of instances among the
three classes before training the classifier. The instances
in the classes are then restored to their original numbers
for testing.

Overall, the classifier is able to make predictions with
93.5% accuracy. The proposed stall detection model is
a significant improvement over previous approaches [15]
where the achieved accuracy was approximately 84% for
a binary classification. In contrast, our model not only
achieves much higher accuracy but it also can predict
the severity of the stalling that affected the user.

The output of the test phase of the model in terms of
True Positives (TP), False Positives (FP), Precision and
Recall can be found in Table 3, while the corresponding
confusion matrix is shown in Table 4.

Precision is calculated as the ratio of TP over TP
and FP and corresponds to the accuracy with which a
certain problem is predicted. Recall is equal to the ratio
of TP divided by the total instances in this class and
measures the models’s ability to correctly identify the
QoE issue of a video session from the data set.

From the confusion matrix we can see that the clas-
sification errors occur between instances without stalls
and those with mild stalls but also between mild and
severe. However, significantly fewer misclassifications
happen between the severe and “no stall” classes.

Therefore, it is straightforward that the errors oc-
cur due to the classifier’s inability to correctly identify
marginal cases where the RR is close to the RR thresh-
olds we defined for labelling the instances. Hence, in-
stances with RR slightly over zero can be falsely pre-
dicted as healthy sessions without stalls and thus in-
creasing the number of FP. The same applies for cases
where the RR is marginally over 10%, which can be
identified as mildly problematic and vice versa.

In more detail, although some marginal instances be-
long to different classes, they often have similar charac-
teristics, such as throughput delay and loss. The sim-
ilarity between instances of different classes can cause
confusion to the classifier resulting to the generation of
FP.

From Table 3, we can see that the healthy sessions are
predicted with higher Precision and Recall when com-



pared to the other two classes. Moreover, the confusion
matrix in Table 4 indicates that very few sessions have
been misclassified as mildly or severly problematic.

These indicators show that healthy video sessions are
streamed in significantly better network conditions as
opposed to the problematic ones. This is translated to
higher BDP and close to zero packet retransmissions for
the vast majority of the instances. Additionally, healthy
conditions allow higher quality streams with fewer or no
quality switches. The combination of these character-
istics allow the algorithm to easily distinguish healthy
videos from problematic ones.

The separation of problematic sessions can be more
challenging however, which can be verified from respec-
tive values in the confusion matrix. Here, in contrast
to the healthy cases, there is a much higher number
of misclassifications between the videos with mild stalls
and those with severe stalls. In these cases, the chunk
size often is not sufficient to indicate the amount of
stalling. The reason for this is that frequently the min-
imum video quality is already selected due to limited
bandwidth and therefore the minimum chunk size or its
standard deviation will not contribute significant infor-
mation for detecting the amount of stalling that took
place during a video session.

Class TP Rate FP Rate Precision Recall
no stalls 0.977 0.111 0.965 0.977

mild stalls 0.809 0.035 0.816 0.809
severe stalls 0.793 0.009 0.887 0.793

weighted avg. 0.935 0.09 0.934 0.935

Table 3: Classifier’s output for the stall detec-
tion model

original label predicted label
no stalls mild stalls severe stalls

no stalls 97.76% 2.06% 0.18%
mild stalls 14.7% 80.9% 4.4%

severe stalls 4.2% 16.5% 79.3%

Table 4: Stall detection confusion matrix

4.2 Average Representation Detection
Feature Construction
In order to detect the average representation of videos
with higher accuracy, in addition to the 10 features that
are already available in the dataset, we construct five
new ones, i.e. the chunk average size, the chunk size
delta, the chunk time delta, the average throughput
and the throughput cumulative sum. The chunk res-
olution is only used for the ground truth and labelling
of the instances and not for the construction of the pre-
dictive model. Hence, we have a total of 14 features
from which we extract the following statistics, mini-
mum, mean, maximum, std. deviation and 5th, 10th,
15th, 20th, 25th, 50th, 75th, 80th, 85th, 90th and 95th

percentiles. As a result, the total number of features we
end up with is equal to 210.

The chunk average size is calculated from the sizes of
all the individual chunks in a video. The size of a chunk
has a strong correlation with the respective quality of
the video segment. The chunk size delta represents the
difference in the size of consecutive chunks while the
chunk time delta corresponds to the inter-arrival time
of video chunks. These parameters are indicators of
representation switches which in turn affect the average
representation of the session and will be discussed in
more detail in Section 4.3.

Figure 3 presents a video session with a representa-
tion switch from 144p to 480p. Each point in the plot
represents a video chunk, while the labels above the
points indicate the segments’ resolutions. The x axis
corresponds to the video session relative time and the
y axis to the size of the video segments. In this exam-
ple there is a representation switch from 144p to 480p
at t = 22 of the time line. This is translated to a sig-
nificant increase for both chunk ∆t and chunk ∆size,
which indicates that they can be relevant indicatiors of
quality switches.
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Figure 3: ∆t and ∆size in a video session with a
representation switch

The average throughput is calculated from the indi-
vidual throughputs of all the chunks, while the cusum is
their cumulative sum. The later is used as an indicator
of variations in throughput.

Labelling
For the detection of the average representation of a
video session, it is necessary to categorize the videos
in three main categories based on their average resolu-
tion, low (LD), standard (SD) and high definition (HD).
Given that in our dataset all the observed resolutions
take only a few standard values, i.e. 144p, 240p, 360p,
480p, 720p and 1080p, we label all videos with resolu-
tions 144p and 240p as LD, 360p and 480p as SD and
all videos with higher resolution as HD.

In the dataset 57% of the videos have LD average
quality, 38% have SD quality and only 5% have HD.
This is an expected finding in our case where videos



are streamed using limited mobile data plans and on
handheld devices that often come whith smaller screens
which leads users to opt for LD and SD video qualities.

However, we need to also account for cases where
there are representation changes during the playback.
For these videos, we calculate the average representa-
tion µ from the resolutions of all the segments. We
proceed to label the instances in the dataset following
the rule below for calculating the Representation Qual-
ity RQ.

RQ =

 HD : µ > 480
SD : 480 ≥ µ ≥ 360
LD : µ < 360

Feature Selection
The FS is again performed with the aid of CfsSubsetE-
val and Best First. After the selection there are 15
features remaining out of the initial 210. These fea-
tures are listed in Table 5, ranked by their respective
information gain.

We observe that statistics derived from the chunk size
are the ones with the highest rank and represent the
vast majority of the 15 features. This is a meaning-
ful and expected result since the chunk sizes are highly
correlated with the different representation qualities.

Moreover, the list of features also contains the BDP
and the BIF which are proportional to the amount of
bytes that can be delivered by the network but also the
throughput cusum which is related to the throughput
variations throughout the video session.

info. gain feature
0.41 chunk size 75%
0.39 chunk size 85%
0.38 chunk size 90%
0.37 chunk size 50%
0.33 chunk size max
0.32 chunk avg size mean
0.22 BIF avg max
0.21 cumsum throughput min
0.2 chunk ∆size max
0.19 chunk size std
0.16 chunk ∆size std
0.15 chunk ∆t 25%
0.06 BDP 90%
0.05 BIF maximum min
0.03 RTT minimum min

Table 5: Features used for the Average Repre-
sentation detection.

Training and Testing the Predictive Model
The model to predict the average representation quality
is again built using ML and Random Forest. The train-
ing is done with balanced classes and then the trained
model is tested on the entire set. The obtained over-
all accuracy in this case is 84.5%. The accuracy for
each class is provided in Table 6 and the corresponding
confusion matrix in Table 7.

Class TP Rate FP Rate Precision Recall
LD 0.9 0.206 0.845 0.9
SD 0.768 0.106 0.82 0.768
HD 0.756 0.003 0.945 0.756

weighted avg. 0.841 0.156 0.841 0.841

Table 6: Classifier’s output for the average rep-
resentation model

original label predicted label
LD SD HD

LD 90% 9.9% 0.1%
SD 22.7% 76.8% 0.5%
HD 6.8% 18.2% 75%

Table 7: Average representation confusion ma-
trix

The accuracies in the later table reveal that our model
is able to predict the average quality of LD videos with
very high accuracy but with slightly reduced accuracy in
the case of SD and HD videos. Nevertheless, the overall
but also the individual accuracies remain in high levels,
which verify the model’s good performance.

When further investigating the accuracy loss how-
ever, we identify that its caused by the increased num-
ber of misclassifications that occur in the SD and HD
classes. More specifically, a considerable amount of SD
video sessions is falsely detected as LD, while 18% of
HD videos are identified as SD.

This behavior is attributed to the quality downscales
that happen during a video session. As a result one
part of the video is streamed in higher quality and the
part after the downscale is streamed with lower quality.
The differences in chunk sizes between the two qualities
of a session lead to the incorrect classification of the
video. Of course the effects of this phenomenon cannot
be observed for LD videos since there is no lower qual-
ity to downgrade to and chunk sizes remain consistent
throughout the session.

4.3 Representation Quality Switch Detec-
tion

Adaptive streaming can adjust the representation of
the video during playback in order to compensate for
changes in the network conditions and reduce the likeli-
hood of playback buffer outages that lead to stalls. The
duration and frequency of the representation changes,
also known as Presentation Quality Switch Rate (PQSR),
as well as the amplitude of the switch can have a nega-
tive impact on the perceived QoE.

Filtering
During the start-up phase, many content providers em-
ploy a fast start mechanism that allows them to fill the
playout buffer and start the playback as fast as possible,
effectively reducing the start-up delay. This short ini-
tial part of a video session may have very different char-



acteristics in terms of segment sizes, inter-segment ar-
rival times and throughput when compared to the much
longer steady phase.

To reduce the noise introduced by the start-up phase
in the detection of resolution variations, we remove the
first ten seconds of all video sessions in our dataset.
Given that this initial section represents a very small
fraction of the entire video session (the average session
duration is approximately 180 seconds), we can safely
remove it to reduce the noise introduced by the start-up
phase while maintaining more than 95% of the session.

Labelling
In order to build a model for quality switching detec-
tion, it is necessary to first quantify the switches in
terms of frequency and amplitude. To this end, we de-
fine two metrics, the time spent in each representation
tr, the frequency of representation switches F and the
switch amplitude A.

The switching frequency F is simply calculated as
the total number of switches that were observed in a
video. The lower the value this metric has, the better
the quality of the corresponding video is.

Finally, equation 2 which is based on the work of
Yin et al.[16], expresses the switch amplitude A as the
normalized sum of all the amplitudes of representation
switches between consecutive segments rk and rk+1.
Again, A is analogous to the degradation of QoE since
large representation changes which lead to poor QoE
will return higher values of A.

A =
1

K − 1

K−1∑
k=1

|rk+1 − rk| (2)

The two metrics are then combined to a single indi-
cator of the representation variation Var using linear
combination. Next, each instance in the dataset is clas-
sified in one of three main categories, no variation, mild
variation and high variation, based on the value of Var.

Change Detection
During the study of the sessions with many represen-

tation changes, we observe that whenever the adaptive
algorithm enforces a change in the representation of the
video, a new start-up phase is initiated for the new rep-
resentation. During this phase, the size and inter-arrival
times of the segments are reduced significantly until a
certain threshold in the playout buffer has been reached
and the video download returns to the steady phase.

In the video session in Figure 3, we can see there is a
steady state in terms of size and inter-arrival times for
the first quality. When the representation switch occurs
however, the chunk time delta and size delta are grad-
ually increasing until a steady state is reached again.

Therefore, for the purpose of more accurately captur-
ing the representation changes we use the two features

that were used in section 4.2, the segment size delta
∆size and segment time delta ∆t.

The most suitable approach to detect representation
changes, is to perform a time-series analysis. This method
allows the identification of abrupt changes in the values
of different metrics in the dimension of time that are
correlated with the switches of representations.

In more detail, our analysis of video sessions with
quality switches showed that whenever a change in res-
olution takes place, a new start-up phase is initiated
in order to fill the buffer with data from the new rep-
resentation as fast as possible. This phase is charac-
terized by video segments with small sizes and small
inter-arrival times which will increase gradually until
the steady state is reached once again.

We find that the metric which better captures the
changes in both the size and the inter-arrival of the
video segments, is the product ∆size×∆t. Specifically,
the multiplication of the two parameters will combine
but at the same time emphasize the effects of each one.
Therefore, for each video session in the dataset, we cal-
culate a new time series where each point corresponds
to the aforementioned product.

While there are many tools and algorithms for de-
tecting abrupt changes in a time series, we find that
the most suitable for the purposes of this work is the
Cumulative Sum Control Chart (CUSUM) which was
developed by E.S. Page [17].

CUSUM is a change detection monitoring technique
which allows the detection of shifts from the mean of a
given sample of points in a time series. When a point
exceeds an upper or lower threshold then a change is
found. In our case, instead of thresholds we use the
standard deviation of the output of the change detec-
tion algorithm. The standard deviation is capable of
capturing the magnitude of the changes that occurred
and is an indicator of high variance.

Figure 4, shows the distributions of the standard de-
viation of the change detection output for sessions with
and without variance. We observe that there is sig-
nificant separation between the two distributions and
by defining a threshold at value 500 on the horizontal
axis, we are capable of correctly identifying 78% of the
sessions without variance and 76% of those that have
representation variations.

Apart from the time-series analysis, ML was also con-
sidered to develop a model for the detection of represen-
tation switches. However, it did not perform as well as
the proposed methodology did and for this reason that
approach was not considered.

5. EVALUATION WITH
ENCRYPTED TRAFFIC

In this section we present and discuss the findings
from the evaluation of the models that were developed
in Section 4 with encrypted data. This step is impor-
tant for verifying that the proposed methodology can



Figure 4: CDF of change detection output for
videos with and without resolution changes.

perform with similar accuracy when dealing with en-
crypted traffic.

5.1 Ground Truth
For the collection of the encrypted traffic, we devel-

oped an Android application which is responsible for
automatically launching YouTube videos which are ran-
domly selected from the list of the 100 most popular
videos on the website [18]. All videos are played using
the latest version of the stock YouTube app for Android,
where encryption is enabled by default.

Apart from handling the playback of videos, the app
has also the capability to extract performance measure-
ments related to the video that is being played. In
more detail, by accessing the device’s log, it can iden-
tify and log the playback status of a video, i.e. if the
playback has started, paused, stopped or if a stall has
occurred. Therefore, we do not only detect if the video
was watched throughout its full length or abandoned
earlier, but also identify any stalling events and their
duration. This information is used as the ground truth
for labeling the data and evaluating the accuracy of the
stall detection model.

In order to capture the ground truth related to the
representation quality switches we need access to the
metadata in the HTTP requests that are responsible for
the download of the individual video chunks. However,
these requests are encrypted by default by the YouTube
application and the required information cannot be cap-
tured by means of traffic monitoring.

Although solutions such as Man-in-the-middle (MITM)
proxies are common in such use cases for decrypting the
traffic generated by the device, we believe that they are
not practical since they alter the path between the client
and the server, but also change the encryption scheme
by establishing two separate TLS connections instead
of one.

To make sure that the ground truth for the quality
switches is obtained without tampering with the en-
cryption scheme or the traffic between the player and
the content server, we reverse engineer the YouTube ap-
plication and pinpoint the method which is responsible
for constructing and performing HTTP requests. Our

application then ‘hooks’ each invocation of this method
and extracts its result, which in this case is the full
URL of the HTTP request. The URL is then parsed to
extract the required ground truth.

Finally, our app will periodically aggregate and send
the collected information from the videos to a remote
server. The local copy of this information is then deleted
from the device to free up space.

5.2 Dataset
Next, the app was installed on a Samsung Galaxy S2

device with a SIM card with an unlimited 3G data plan.
The instrumented phone was given to a user who was
instructed to carry it at all times for a period of 25 days.
The user was motivated to launch the application when
moving to increase the probability of QoE issues.

As a result, we generated a dataset for the ground
truth and a dataset from the encrypted traffic corre-
sponding to 722 video sessions. Each entry in the ground
truth dataset corresponds to a unique segment and the
video session ID which the segment belongs to, the
timestamp that marks the beginning of the chunk down-
load, a field to indicate if it is an audio or video segment,
the total number and duration of the stalls observed in
the session and finally its quality representation.

The encrypted traffic data is collected again from the
proxy in the form of weblogs. However, since the flows
are encrypted, information such as the session ID, the
stall characteristics and the quality level of each chunk
are not available. Therefore, we only extract the times-
tamp of the HTTP request, the server IP address and
port, the size of the requested object and the TCP
statistics which were described in detail in Section 3.1.

Although the session ID is available in the ground
truth dataset and it is used to group the video segment
statistics in unique sessions, this parameter is missing
from the encrypted data. Even so, we find that it is
possible to identify the encrypted segments that belong
to the same session and group them together.

To achieve this we go through the following steps:

• Identify the traffic that corresponds to a single
subscriber and remove all requests that do not be-
long to YouTube by filtering out those that have
domain names not related to the service.

• Next, we look for the unique HTTP traffic patterns
that take place at the beginning of a new video
session but also after the completion of the play-
back. These include requests to m.youtube.com
and i.ytimg.com which are responsible for down-
loading multiple web objects such as HTML, scripts
and images to construct the video’s web page.

• Longer periods without traffic that correspond to
the time between consecutive sessions are identi-
fied in order to clearly define the beginning and
ending of each session.



This methodology has high accuracy as it successfully
identified the vast majority of the sessions that were
launched during the entire period of the measurements.
However, it can be limited in scenarios were the same
subscriber launches multiple videos in parallel and not
sequentially. Although such cases are quite rare, it can
be challenging to identify the segments that belong to
the same video session.

Then the two datasets can be easily joined by match-
ing the respective timestamps and the chunk count per
session. As a result, the final dataset contains the same
metrics that were described in the left column of Table
1. Having the exact same set of features in both datasets
is necessary to allow the evaluation of the trained mod-
els that were created in the previous section with the
new data from the encrypted traffic.

5.3 Dataset Comparison
In this section we characterize the two datasets and

make a comparison of the key features. This will help
verify that the encrypted YouTube service behaves sim-
ilarly to the unecrypted and the model built for plain
traffic works for encrypted traffic as well.

More specifically, in Figure 5 we present the distribu-
tions of the segment size (left) for encrypted and clear-
text. The right figure shows the comparison between
the two distributions for the segment inter-arrival times.

In the case of the segment size, there is a significant
overlap between the two distributions. This indicates
that there is a common pattern with respect to the
downloaded chunk sizes of the videos in both datasets
which can be translated to videos streamed with similar
qualities. Only 10% of the segments were larger than
1MB which can be found in HD videos, while the ma-
jority of the segment sizes are consentrated at or below
500KB which corresponds to SD video quality.

The distributions for the segment inter-arrival times
also have very common characteristics. However, 60%
of the encrypted chunks have slightly lower values in
comparison with the respective unencrypted data. The
shorter times between chunks are indicative of lower
bandwidth availability that results in faster depletion of
the playout buffer and a more frequent request of new
segments. This observation is expected since a large
part of the encrypted videos was downloaded while the
user was commuting where network conditions can sig-
nificantly deteriorate.

5.4 Stall Detection
Before evaluating the model for detecting stalls, we

repeat the feature construction process described in Sec-
tion 4.1. However, an automated feature selection like
the one employed in the previous section is no longer
necessary since we already know the important features
that are required to make predictions and the rest are
safely removed. Next, the trained model from Section
4.1 is directly tested with encrypted traffic.

Figure 5: CDF of the segment size (left) and
segment inter-arrival time (right) for encrypted
and unencrypted traffic.

The resulting accuracy is 91.8% which corresponds to
only 1.7% lower performance than the evaluation with
unencrypted data. Nevertheless, this is still an excellent
result which demonstrates that the training set that we
used created a very accurate model that can be applied
to encrypted traffic with equal success.

Table 8 shows the evaluation results in terms of Preci-
sion and Recall and Table 9 the corresponding confusion
matrix. Here we can see that the performance has im-
proved for the videos without stalls, it remained roughly
the same for sessions affected by mild stalling but has
decreased for the case of videos with severe stalls.

Class TP Rate FP Rate Precision Recall
no stalls 0.97 0.19 0.96 0.97

mild stalls 0.75 0.04 0.79 0.75
severe stalls 0.64 0.02 0.6 0.54

weighted avg. 0.92 0.16 0.92 0.92

Table 8: Classifier’s output for the stall detec-
tion evaluation

original label predicted label
no stalls mild stalls severe stalls

no stalls 97.2% 2.5% 0.3%
mild stalls 18.6% 75.2% 6.2%

severe stalls 2% 32.4% 65.6%

Table 9: Stall detection confusion matrix

The detection of non-problematic videos is done with
higher accuracy than the one observed in Section 4 be-
cause there is smaller diversity in the network conditions
where the healthy sessions occur. This is attributed to
the fact that the majority of these sessions are generated
when the user is static either at the office or at home,
where the network conditions have a constant perfor-
mance and as a result, the classifier can more easily
identify that these sessions did not have any issues.

The main source of the overall accuracy loss in this
evaluation however, is the class of videos with sever
stalls. From the confusion matrix it is apparent that



this is a result of the increased number of videos with
severe stalls that were falsely detected as mild stalls.
This is a problem that was also observed to a lesser
extent in the training and evaluation with the unen-
crypted dataset (Section 4.1).

Although the low performance for the severe stalls
class is attributed to the same reasons that were de-
scribed in the previous section, the further decrease
in accuracy originates from the fact that in the new
dataset most of the sessions with severe stalls have a
Rebuffering Ratio slightly higher than 0.1. Remember
that 0.1 is the borderline that was defined to separate
sessions with mild and severe stalls. Therefore, it be-
comes more difficult for the classifier to distinguish to
which class these videos belong to.

5.5 Average Representation Detection
The evaluation of the second model for the detection

of the average representation is done following the same
process as previously. The extended set of features is
generated by means of feature construction, followed
by the manual removal of the features which do not
contribute to the model. This results in the same 15
parameters that were presented in Table 5.

The evaluation is performed with the same approach
as previously, where the encrypted dataset is used as a
test set for the trained model. The process returns an
overall accuracy equal to 81.9% which is approximately
2.5% less than the respective result we got when using
the unencrypted dataset in Section 4.2. Again, this is
an overall good indicator that the model can perform
the detection with almost equally good accuracy when
dealing with encrypted traffic.

In Tables 10 and 11, we can see more details regard-
ing the performance of the evaluation per label. Specif-
ically, although the detection of LD and SD videos is
done with slightly reduced accuracy, we still get satis-
factory performance as we can see from the Precision
and Recall values. If we look at the confusion matrix
below however, we observe that there is an increase in
the LD videos which were misclassified as SD. This is
attributed to the fact that in the current dataset the
number of 240p videos in the LD category is signifi-
cantly higher than the 144p. This causes a shift in the
distribution of the average quality for this category to-
ward the higher end, which in turn causes the incorrect
classification of a percentage of these videos as SD.

Another reason behind the reduction of the accuracy
is the reduced detection capabilities for the HD videos.
In this case, the Precision and Recall for this class have
both reduced significantly. At the same time, from the
confusion matrix we see that a significant amount of
videos have been incorrectly identified as SD quality.
This poor performance is a result of the very small num-
ber of videos that are available in the HD class. When
combined with the also relatively small number of HD
videos that were used to train the model, this results
in a class where the training and testing was done with

small number of samples and therefore reduced detec-
tion capabilities for this class.

This problem can be easily alleviated by introducing
a training set that is much richer in HD videos. This
will allow the creation of a predictive model which will
be based on a more diverse dataset that will be capable
of a more accurate detection of the average quality of
HD videos with different characteristics.

Class TP Rate FP Rate Precision Recall
LD 0.845 0.203 0.853 0.845
SD 0.789 0.157 0.775 0.789
HD 0.513 0.003 0.641 0.513

weighted avg. 0.819 0.183 0.819 0.819

Table 10: Accuracies from the evaluation for the
average representation detection

original label predicted label
LD SD HD

LD 84.5% 15.4% 0.1%
SD 20.4% 78.9% 0.7%
HD 15% 33.75% 51.25%

Table 11: The confusion matrix from the average
representation evaluation

5.6 Representation Quality Switch Detec-
tion

The last phase of the evaluation is done for detect-
ing quality switches. In this case, there is no trained
model that can be directly applied to the encrypted
data. In contrast, the methodology relies on the de-
tection of changes that happen in the time intervals
between segment downloads and the difference in size
between consecutive segments.

In this evaluation there is no requirement for feature
construction or feature selection. We only need to cal-
culate the time series of the products ∆size × ∆t for
each video in the dataset which is going to be used as
input for the change detection algorithm. Next, we ap-
ply the change detection on each session and from that
we take the standard deviation.

In order to validate the methodology from Section
4.3, we use the same value that was proposed in that
section as a threshold for the standard deviation of the
change detection output.

STD(CUSUM(∆size×∆t)) = 500 (3)

According to the proposed methodology, all sessions
below the threshold should represent approximately 78%
of the sessions without quality switches and the sessions
above the threshold should represent 76% of the sessions
with quality switches (Figure 4).

Next, the dataset is split into two parts, i.e. the ses-
sions with score below the threshold and those with a



score above it. From the ground truth from the en-
crypted data, we are able to evaluate if the predefined
threshold allows the detection of variance with accuracy
equal to the one demonstrated in Section 4.3.

Our analysis reveals that the first part of the dataset
consists of 76.9% of videos without any quality change,
while in the second part we find 71.7% of the sessions
with quality switches. These accuracies are lower by
1.1% and 4.3% respectively as compared to the results
from the evaluation with unencrypted data.

The decrease in accuracy for detecting videos with
quality switches indicates that the encrypted data con-
sists of videos where the average quality variance is
smaller than the one that was observed in the previ-
ous section. As a result, the distribution of (3) shifted
towards the smaller values and after the threshold was
applied, lower percentage of problematic sessions was
correctly identified.

6. RELATED WORK
Prometheus [15] uses passive measurements on a mo-

bile network to estimate the QoE of two applications,
Video on Demand and VoIP. For the video QoE only
Buffering Ratio is considered as a QoE indicator, while
the system is evaluated only on unencrypted traffic us-
ing binary classification to detect buffering issues with
84% accuracy.

Using similar approaches, OneClick [19] and HostView
[20] develop predictive models to detect the QoE of mul-
tiple applications including video streaming, using net-
work performance metrics. However, both approaches
are limited by the requirement of instrumented devices
to capture the feedback from the users.

Hossfeld et al. [11] study the impact of the amplitude
and frequency of representation switches on the user
experience. The authors re-encoded a video in multiple
qualities and introduced different levels and frequencies
of switching and performed crowd-sourced experiments
to detect correlations with the received MOS from the
users. In this work only a single short video was used,
which can be considered a very limited representation
of the diverse content found in popular services.

In [10] the authors perform subjective tests in mobile
networks to assess the impact that the video quality
level and quality switching among other factors has on
the users’ experience. The experiments were conducted
with a very limited sample of very short videos, while
only the direction of quality switching, i.e. resolution
upscaling or downscaling was taken into consideration
but not the effects of the amplitude or the frequency.

Finally, the work of Liu et al. [21] investigates three
factors that influence the user perceived quality, initial
delay, stalling and quality level variation. The authors
conducted experiments in the lab with different network
conditions in order to derive functions for calculating
each of the three impairment factors. The fact that the
tests were performed in the lab however, minimizes the

generalization of the results to real network conditions
and to real streaming services where CDNs and different
quality adaptation logics can create different effects in
terms of initial delay and quality switches respectively.

Overall, although significant work has been done pre-
viously in detecting and quantifying the factors that af-
fect the quality of video streaming, our work is the first
that extensively studies these factors in a large scale
network using encrypted traffic.

7. LIMITATIONS
The methodology presented in this paper was devel-

oped using information from YouTube video sessions
that were streamed with the service’s current configu-
ration. However, the predictive power of the models re-
sponsible for detecting QoE impairments can be limited
in the case YouTube changes its video delivery scheme.
In such a scenario, the models that were affected by the
changes need to be trained and evaluated again with an
updated dataset.

Moreover, we do not study the evaluation of the method-
ology with other video streaming services in order to
verify to what extent this approach can be generalized.
However, our analysis of other popular video streaming
services such as Vevo, Vimeo, Dailymotion and so on,
has revealed that they have adopted the same technolo-
gies that YouTube is using for content delivery such as
adaptive streaming, rate limiting, wide range of codecs
and qualities and HTML5-based playback. This com-
mon set of characteristics is a strong indicator that our
methodology can be generalized to a number of other
streaming services and motivates us to include it in the
future steps of this work.

8. CONCLUSIONS
In this work we presented a novel framework for de-

tecting from encrypted traffic the 3 key factors that im-
pact both adaptive and classical video streaming QoE,
i.e. stalls, average quality and quality switching.

Next, we demonstrated through evaluations on en-
crypted and unencrypted traffic from a large mobile
network, that the proposed models can detect different
levels of impairments with accuracies as high as 93.5%.

One of the main findings of the paper is that the
changes in size and inter-arrival times of video segments
are among the most important indicators of quality
impairments. The incorporation of these features in
our detection framework resulted in significant improve-
ments in accuracy.

We showed that the framework can perform very well
on a real production network using a few key perfor-
mance metrics from a single vantage point and without
the requirement of instrumented clients or additional
vantage points, so it can easily be deployed by network
operators. The trained models can be then directly ap-
plied on the passively monitored traffic and report issues
in real time.
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